Acute-phase protein hemopexin is a negative regulator of Th17 response and experimental autoimmune encephalomyelitis development.
نویسندگان
چکیده
Hemopexin (Hx) is an acute-phase protein synthesized by hepatocytes in response to the proinflammatory cytokines IL-6, IL-1β, and TNF-α. Hx is the plasma protein with the highest binding affinity to heme and controls heme-iron availability in tissues and also in T lymphocytes, where it modulates their responsiveness to IFN-γ. Recent data have questioned regarding an anti-inflammatory role of Hx, a role that may be both heme-binding dependent and independent. The aim of this study was to investigate the role of Hx in the development of a T cell-mediated inflammatory autoimmune response. During experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis, Hx content in serum increased and remained high. When EAE was induced in Hx knockout (Hx(-/-)) mice, they developed a clinically earlier and exacerbated EAE compared with wild-type mice, associated to a higher amount of CD4(+)-infiltrating T cells. The severe EAE developed by Hx(-/-) mice could be ascribed to an enhanced expansion of Th17 cells accounting for both a higher disposition of naive T cells to differentiate toward the Th17 lineage and a higher production of Th17 differentiating cytokines IL-6 and IL-23 by APCs. When purified human Hx was injected in Hx(-/-) mice before EAE induction, Th17 expansion, as well as disease severity, were comparable with those of wild-type mice. Taken together, these data indicate that Hx has a negative regulatory role in Th17-mediated inflammation and prospect its pharmacological use to limit the expansion of this cell subset in inflammatory and autoimmune disease.
منابع مشابه
MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis.
Accumulation of IL-17-producing Th17 cells is associated with the development of multiple autoimmune diseases; however, the contribution of microRNA (miRNA) pathways to the intrinsic control of Th17 development remains unclear. Here, we demonstrated that miR-21 expression is elevated in Th17 cells and that mice lacking miR-21 have a defect in Th17 differentiation and are resistant to experiment...
متن کاملProtein C receptor (PROCR) is a negative regulator of Th17 pathogenicity
Th17 cells are key players in defense against pathogens and maintaining tissue homeostasis, but also act as critical drivers of autoimmune diseases. Based on single-cell RNA-seq profiling of pathogenic versus nonpathogenic Th17 cells, we identified protein C receptor (PROCR) as a cell surface molecule expressed in covariance with the regulatory module of Th17 cells. Although PROCR expression in...
متن کاملKinetics of T cell response in the testes and CNS during experimental autoimmune encephalomyelitis: Simultaneous blood-brain and -testis barrier permeability?
Objective(s): Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are regarded as autoimmune diseases of the central nervous system (CNS). The CNS, testes, and eyes are immune privileged sites. It was initially presumed that ocular involvement in EAE and infertility in MS are neural-mediated. However, inflammatory molecules...
متن کاملSLAT/Def6 plays a critical role in the development of Th17 cell-mediated experimental autoimmune encephalomyelitis.
SWAP-70-like adapter of T cells (SLAT; also known as Def6) is a novel guanine nucleotide exchange factor for Rho GTPases that has been previously shown to play a role in CD4+ T cell activation and Th1/Th2 differentiation. However, the role of SLAT/Def6 in autoimmunity and its associated Th1- and Th17-specific responses has not yet been clearly elucidated. We used a prototypical and pathological...
متن کاملThe Nuclear IκB Family Protein IκBNS Influences the Susceptibility to Experimental Autoimmune Encephalomyelitis in a Murine Model
The nuclear IκB family protein IκBNS is expressed in T cells and plays an important role in Interferon (IFN)-γ and Interleukin (IL)-2 production. IκB-ζ, the most similar homolog of IκBNS, plays an important role in the generation of T helper (Th)17 cells in cooperation with RORγt, a master regulator of Th17 cells. Thus, IκB-ζ deficient mice are resistant to Th17-dependent experimental autoimmun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 191 11 شماره
صفحات -
تاریخ انتشار 2013